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Idea of this lecture

® Show common statistical tools and best practice methods
® Explain basics and foundations
® Use lots of examples (be practical, but simple)

® See textbooks for completeness, details, and proofs



WHOA! WE SHOULD GET INSIDE!

ITS OKAY! LIGHTNING ONLY KILLS
ABOUT Y5 AMERICANS A YEAR, SO
THE CHANCES OF DYING ARE ONLY
ONE IN 7000 000. LETS GO ON!

.J

]

http://xkcd.com/795

THE ANNUAL DEATH RATE AMONG PEOPLE A little knowledge
WHO KNOW THAT STATISTIC IS ONE. IN SIX. is a dangerous thing...




Lecture summary

® Thursday
® Probability
® Model fitting
® Confidence intervals
® Friday
® Confidence limits
® Monte-Carlo and resampling methods
® Testing hypotheses

® Saturday
® Probability density estimation

® Multivariate classification
® Optional: Artificial neural networks



® G. Cowan, Statistical data analysis, Claredon Press (1998)

® F. James, Statistical Methods in Experimental Physics — 2nd edition,
World Scientific (2006)

® B. Efron and R. Tibshirani, An introduction to the bootstrap, Chapman
and Hall (1993)

® V. Blobel and E. Lohrmann, Statistische und numerische Methoden der
Datenanalyse, Teubner Verlag (1998)

® A.J. Izenmann, Modern Multivariate Statistical Techniques, Springer
(2008)

® TMVA Workshop @ CERN, January 2011 —
http://indico.cern.ch/event/tmva_workshop

® Davison and Hinkley, Bootstrap methods and their applications,
Cambridge University Press (1997)

® Press, Teukolsky, Vettering, Flannery, Numerical Recipes — 3rd edition,
Cambridge University Press (2007)



Useful software

Python + numpy + scipy + matplotlib

www.python.org WWW.SCIpy.org www.numpy.org matplotlib.sourceforge.net

ROQT (in particular RooFit, RooStats)

root.cern.ch/drupal

R (main tool of statisticians)
WWWw.r-project.org

TMVA

tmva.sourceforge.net



Topics for today

® Probability
® Bayesian and Frequentist views
® Bayes theorem
® Probability distributions and probability density functions

® Model fitting
® Maximum-likelihood method
® (Linear) least-squares method

® (Calculation and interpretation of fit uncertainties



Probability



Probability

s

Frequentist view

Bayesian

. P = frequency of outcome from a
view (in principle) repeatable process
P = degree of belief Objective statements

betting odds! :
( J ) Confidence regions based on coverage

Allows one to calculate
P of non-repeatable

events, e.g. “probability”  No objective statements
of a theory being correct  Ragylts depend on prior beliefs

__”

Can handle systematic uncertainties




Calculus for probabilities

Both Bayesian and Frequentist probabilities obey the Kolmogorov axioms
Let's regard a set of exclusive events X with probability P(X) of occurrence of X

a) P(X;) > 0forallq probabilities cannot be negative
b) P(X;or X;) = P(X;) + P(X;) probabiliies of mutually exclusive events add up

C) Z P(XZ) —1 probabilities of all mutually exclusive events add up to one
)

More general rules follow for non-exclusive events

P(Aor B)=P(A)+ P(B)— P(Aand B)

P(Aand B) = P(A|B)P(B) = P(B|A)P(A)
A and B are independent if P(A|B) = P(A),then P(Aand B) = P(A)P(B)

Bayes theorem 41y _ P(B|A;) P(Ai;) _ P(B|A:) P(A)
(Bayesian and Frequentist) ¢ P(B) S P(B|A;) P(A;)

10



Bayesian use of Bayes theorem

After looking at LHC data, should | believe in the Higgs? Use Bayes theorem:
P(data|Higgs) P(Higgs)
(data|Higgs) P(Higgs) + P(data|no Higgs) P(no Higgs)

P(Higgs|data) = Iz

What is my prior belief in the Higgs? | P’(Higgs) = P(no Higgs) = 0.5
| don't know. Uninformative prior

Use of Bayes theorem with uninformative priors is the closest to
objective inference that Bayesian methodology has to offer

a) P(data|Higgs) = 0.6  P(datanoHiggs) = 0.1 = P(Higgs|data) =0.75
Odds to explain data with/without the Higgs 6 to 1, still the Higgs is not a sure bet

b) P(data|Higgs) = 0.8  P(data|no Higgs) = 0.8 = P(Higgs|data) = 0.5

Data did not allow to discriminate between the hypotheses, no update of my belief
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Probability distributions

Discrete outcomes (e.g. event/particle counts)
) 2
Expectation E[k] = Z k;P(k;) Variance V[k] = Z k;P(k;) — (Z kiP(ki)>

Poisson
0.35 ! ‘ L
—A =15
0.304 L
0.25
—. 0.20
=
R~ 0.15
0.104
0.05 4
0.00 ‘ T . T
0 5 10 15 20 25
k
~A\ k
e "\
P(klI)\) =
(k]A) = —

Elk]=X V[k] =X
Count of events from a source
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Binomial

—p =09, N=24

0.30
0.25
0.20 4

Eam

=015
ol

0.10+

0.05

0.00

0 5 10 15 20 25
k

P(klp, N) = (]ID R——

Elk] = Np  V]k]= Np(1 —p)

Selection of k events out of N events



Probability distributions

Continuous outcomes (e.g. energy deposited in a detector)

0 Bla) = [deaf(@)  Elg@)] = [ dogla)fa)
A

dk = f(a:)dx Linearity Flax 4+ by| = a Elz] + b E|y]

In general for non-linear g(x)  E[g(x)] # g(E[x])
>x V] =E[+°] - Elz]?

dx Viaz +by] = a® Vix] + b* V[y] + 2ab cov]z, y]

Multivariate case
dk = f(¥)d¥ = f(¥)dxg - - - dz,

Elg(#)) = / 47 9(%)f (7) = / Ao - - - dzng(7) £ ()

Covariance matrix cov|z;,z;| = Elx; z;] — Elz;| E|x,] cov|z;, x;] = V]x,]
Correlation corr|z;,z;] = cov|z;, z;] —1 < corr|z;,z;] <1
olz;] olz;]
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Probability distributions

Continuous outcomes (e.g. energy deposited in a detector)

Multivariate normal (Gaussian)

1 1
V) = —g—exp (~5@ - V@ - )
V2r |V 2
0.25 S
d=1 —u=450=2
Elz]=p 0.20 -
coviz;, x;| = Vi
015
=
Limit of many random 010
fluctuations added up
0.05-
0.00

-4 -2 0 2 4 6 8 10 12 14
X
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Probability distributions

Continuous outcomes (e.g. energy deposited in a detector)
: 2
Chi-square X

N/2—1 _
()" e
2 0.25 '
—N=3
Elx] =N
0.20 -
Vix] =2N
0.15 -
=
Y—,
0.10
Sum of N normal distributed variables
with u=0, o= 1 0.05 -
0.00 l .
0 5 10 15 20
X
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Some words about correlation

Example A: x, and x, from normal distribution with t, o

1
Variance of average = = 5(900 + 1)

1 1 1 1 21
Vi=(xg + 1) = —(02 + 02) + —cov|xg, z1] = —02(1 + p)
2 4 QHT/ 2 S0

po
1 =
p=0=VI[z] = 502 Variance decreases o< 1 / N

2

p=1= VI[Z] =0° No information gained

p=-1=V|[Z] =0 Norandomness

8_

<+ _ ]

Independence of x. and X cov[x,, X,-] -0 ) 6

4 1 \ '.'
Example B: x, from normal distribution with 1 =0, x, = x2 | ‘\\ /

cov|zg,x1] = Elrg 21| — E|xo|F|x1] \/
0 .
0 2 4 6

= Elxg] — Elwo] Elzg] = 0 R ¢
16



T USED T THINK, THEN I TOCK A | | SOUNDS LIKE THE
CORRELATION IMPUED| | STATISTICS CLASS. CLHSE HELPED.

TR

http://xkcd.com/552
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Change of variables

Choice of random variable of continuous distribution is usually not unique

How to transformx — y ?

dk = f(z)dz = g(y) dy 20
- 3
dy ' y(x) =50
o) = f(2)| - . _
. N
9(5) = f(@) | 5= =10 I
— L dh=g)Sy
determinant of Jacobian matrix |\ /
z > _dk = f(x) dx I
Special = Fer Iy i
case Y= /_OO de' f(2") = F(z) c.d.f.
1 0 . ——— .
g(y) = f(x)m =1 flat 0.0 0.2 0.4 . 0.6 0.8 1.0

useful to judge by eye whether random variable x follows f(x)
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Model fitting

19



Model fitting

Unbinned data x; or histogram Z;, k;

fitting Optimal parameters in light of data?
Uncertainty due to limited sample?

Model or empirical parametrization
with free parameters f(x|p1,...,Pn)

Maximum-likelihood method
Most general and most powerful method
Solution may depend on initial guess

Least-squares method

Good numerical properties but usually an approximation
Solution may depend on initial guess

Linear least-squares method
Fast unique solution independent of initial guess

20

Example normal distribution
100 data points
10 bins

40
35
30
251
20
15 A
10 A

0.0 2.0

\

use solution as starting
point for full ML




Maximum-likelihood method

ldea: Model should maximize joint probability of all data points = likelihood

—

L(p17 IR 7pn — ﬁ) H P depends only on the model parameters P

If the x, are direct samples of a p.d.f. f(x), this can be simplified
T, +Ax;

L(p) = HP:UZI@ H/ dz f(z|p) ~ > Hf(xim)mi

Xy —

we can choose the intervals arbitrarily small

Sums are easier to handle so maximize InL instead of L (logarithm is monotonic)

In L(p) = ZlnP (zilp)|= > I f(m:lp) + Y Aw; =|> In f(z:]p)
1 1 1
constant with respect to p'!

.o ) ! Generally a non-linear problem
Maximizing InL means solving  JzIn L(p) =0  Minimization done numerically

(e.g. with MINUIT)
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250

200 +
1640
100 +
50
0 g 1T
0.0 0.5 1560 15 2.0

Fit directly to point distribution
r g has to be normalized

InL = Z In[g(x;|N, u,0)/N]

+ In fpoisson(Ntota N)

22

poisson

0.4

0.0 0.5 1.0 1.5 2.4
X

Fit to Poisson distributed histogram counts

InL = Z In fpoisson(kia Ai (Na My J))

Tit1
A = / Az froaat(z|N, 11, 0)

7



Least-squares method

Special case of maximum-likelihood method
Only usable with binned data (or in general: x, y. pairs)

Assumes multivariate-normal distribution of deviations from model
| I, Yi data pairs

L) x exp (57~ F@H) VG - @) Vi = covlyie)
fi(x;) model prediction
Common case of independent observations

e (z@i;(sz;;@ﬁ

(/

Minimize LS(p) = Z (yZ — yl@ @) = sum of squared residuals

: CUz |]7) — method of least squares

Another common simplification
Replace o (x;|p) by point-wise estimates 0; (e.g. for histogram entries o; = \/k;)

23



Linear least-squares method

Special case of least-squares method

Often used to get starting point for numerical minimization of LS or ML methods
Solution is unique, statistically unbiased and has minimum variance

Linear model y(x) = ij b(z) e.g. polynomial () = po + p1 & + po
J

LS(p) = (§— Ap)"V~1(§ — Ap) Vij = cov(yi,y5) A = be(x;)
Minimum condition can be solved analytically

0=0;LS = —2ATV " Nj— Ap) with 0z(FTMZ) = 2MZ, it MT = M

ﬁ: (AT‘?_lA)_lATV_lg
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Fit model to histogram counts assuming normal distribution of residuals with 0; = +/Y;

Least-squares method

45
40
35 ~
30
5 | g(x) Ax
20
15
10 +

5

0

0.0 0.5 1.0 1.5 2.0
X

(kz - g(i.’LlNa My O->ACB)2

=

. 7
1
Cannot use entries with k= 0
- |oss of information

25

Linear least-squares method

4
In(g(x) Ax)

3_

2_
—
i =

1 B

0 L

—1 | |
0.0 0.5 1.0 15 2.0
X
Ink; — bx; 72)?
LLS(a,b,c):Z(n a+bx; +cx;)

1/vk;i

Transform after fit a, b, ¢ — N, u, o
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Calculation and interpretation
of fit uncertainties

26



Uncertainty of ML-estimate

InL for observation fi from normal distribution with unknown p and known o2

N L)

1 — )2 In =5

L(p) = exp (— ('LLQ 5) ) YL
2mo o L— 0 A,EL w+o

L(p) 1 2
1 = —— (u— [ > U
YTy T 202 M / \

1 1 12 R _l I
5= "5 = (h— ) =*o 27 \
Due to properties of normal distribution

Pl-osp-p<o]=68% Wo=gw)| mpls

Plp—o<u<p+o]=68% Y U
>
Approach also valid in case of non-normal distribution / H
Invariance of  L'(1/)  L(p) QptO1 N /A R
likelihood ratio  T/(7) — L(j) dutan’ 2 / |\
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Uncertainty of ML-estimate

Alternative approach if In L(x) is approximately parabolic

Tayl [ N N R
o M L(w)| &~ In L(i)|+ 505 n L(p)|,_ (= 2)? + O(u — 1)’

In L(p) = In L(f1)| — 5 —5| (1 — )"

General multivariate case
Least-squares method

Maximum-likelihood method | 4o
LSB) =1 = pi 0"
] L)+ 1 o r Z
T 2 T P j -
p ’ ~ .
N V 228,05, LS| ;_;

Vo~ - (81% Op, 1n L(p) ’ﬁ=5> :

Linear least-squares method

V=(ATV1A)™  exact
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Bias of ML-estimate

2
Example: normal distribution with 2\ 1 _ (z — M)2
unknown y, o f(wlo) = =P ( 202

N 1 ! N 1 A
InL(0?) = 5 Ino? — 53 Z(azz —u)? = 0=0,2InL(c?) = —53 + 5 Z(% — [1)?

. 1 A .
6% = N Z(xi — ,u)2 with H# = N sz biased estimator of o?

2 2 2
. . o 20 o
= El(zi =)+ (h—p) =20 —p)(@i )] = 0"+ 5 - 7= =0 — =
N unbiased estimator of o2 N N\ .
2 _ A2 2] _ 2
ST N_-1° with increased variance Vis) N — 1) V1o
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Method comparison

LS 112 - ML-binned

104_ B 50 | | | - 09
. < 96h+ ““““ } “““ + “““ + | &
: Y | 88 - T T T T Y 7 EEE
. 1.050 —— ' ' ' 1
=00 05 1}.;0 15 20 1035 . - 0 8:;

= 1.020 - + i
. Ls 10054 | L. 1 ] | - ML
;g 0990 T T T T oo,
;2: 022_ o 150
] 0.21 I [
Y 50.20————— ——————— } —————— * —————— +—————
00.0 0.‘5 13.;0 1.‘5 2.0 0 . 19 N B 00‘0 0.5 1).(0 1:5 2.0
LLS LS ML-binned ML
fast slow
approximate » accurate

30

larger variance

smaller variance



Coverage

L 1
How to interpret confidence regions from In LEZZ)) = —5 or LS(p) =17
p
If experiment would be repeated... D1
A

Intervals along each dimension
cover true value in 68 % of all cases

But: 2d-region covers true values +
only in C = 39 % of all cases
68 %
How to get C = 90 % or 99 % regions?

General case: N parameters
C confidence of coverage
Lp) 1 ! — Po
in P L2\ 5(0) or LS () S (C)
L(p) oy ob
2
X3
with/ dz f,2(z|N) = C solved for X3 N=1C=68%—xsg=1
0 N=2C=68%— x3z~ 151
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Some fitting advice

® Think carefully about the fluctuations in your problem

® Use un-binned maximume-likelihood method if possible

® Under very general conditions, ML-estimate is asymptotically unbiased and
has minimum variance (Cramer-Rao bound)

® Use linear models for empirical parametrizations
® Fourier terms, polynomials, B-splines, ...

® If you use approximate variance formula, check whether it applies

® |f confidence interval is not symmetric, result is usually biased

32



Bayesian vs. Frequentist inference

Frequentist (Reproducability)  Bayesian (Decision theory)

Inference principle
Likelihood function Bayes theorem and prior probabilities
No treatment of systematic uncertainties Treatment of systematic uncertainties
“Objective Bayesian”: Jeffreys or Reference priors

Point estimation

Maximum of likelihood function Mean of posterior probability density
Invariant to transformations Not invariant to transformations

Interval estimation

Based on likelihood ratio Quantiles of posterior probability density
Coverage Credible interval tells nothing about coverage

Restriction of a parameter at a physical boundary
Via parameter transformation Via prior probabilities

33
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