

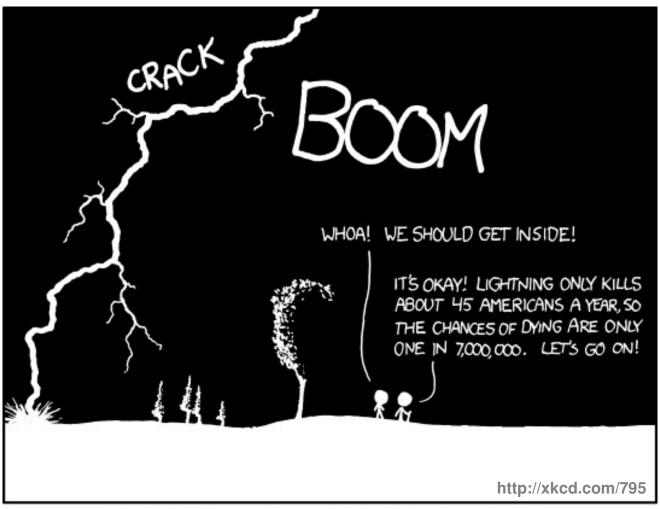
Statistische Methoden der Datenanalyse

Hans Dembinski IEKP, KIT Karlsruhe

Idea of this lecture

- Show common statistical tools and best practice methods
- Explain basics and foundations
- Use lots of examples (be practical, but simple)
- See textbooks for completeness, details, and proofs

Humor



THE ANNUAL DEATH RATE AMONG PEOPLE WHO KNOW THAT STATISTIC IS ONE IN SIX.

A little knowledge is a dangerous thing...

Lecture summary

- Thursday
 - Probability
 - Model fitting
 - Confidence intervals
- Friday
 - Confidence limits
 - Monte-Carlo and resampling methods
 - Testing hypotheses
- Saturday
 - Probability density estimation
 - Multivariate classification
 - Optional: Artificial neural networks

Literature

- G. Cowan, Statistical data analysis, Claredon Press (1998)
- F. James, Statistical Methods in Experimental Physics 2nd edition, World Scientific (2006)
- B. Efron and R. Tibshirani, An introduction to the bootstrap, Chapman and Hall (1993)
- V. Blobel and E. Lohrmann, Statistische und numerische Methoden der Datenanalyse, Teubner Verlag (1998)
- A. J. Izenmann, Modern Multivariate Statistical Techniques, Springer (2008)
- TMVA Workshop @ CERN, January 2011 http://indico.cern.ch/event/tmva_workshop
- Davison and Hinkley, Bootstrap methods and their applications,
 Cambridge University Press (1997)
- Press, Teukolsky, Vettering, Flannery, Numerical Recipes 3rd edition,
 Cambridge University Press (2007)

Useful software

```
Python + numpy + scipy + matplotlib
www.python.org www.scipy.org www.numpy.org matplotlib.sourceforge.net
```

ROOT (in particular RooFit, RooStats) root.cern.ch/drupal

R (main tool of statisticians) www.r-project.org

TMVA tmva.sourceforge.net

Topics for today

- Probability
 - Bayesian and Frequentist views
 - Bayes theorem
 - Probability distributions and probability density functions
- Model fitting
 - Maximum-likelihood method
 - (Linear) least-squares method
- Calculation and interpretation of fit uncertainties

Probability

Probability

Bayesian view

P = degree of belief (betting odds!)

Allows one to calculate *P* of non-repeatable events, e.g. "probability" of a theory being correct

Frequentist view

P = frequency of outcome from a (in principle) repeatable process

Objective statements

Confidence regions based on coverage

No objective statements Results depend on *prior beliefs*

Can handle systematic uncertainties

Calculus for probabilities

Both Bayesian and Frequentist probabilities obey the Kolmogorov axioms Let's regard a set of exclusive events X_i , with probability $P(X_i)$ of occurrence of X_i

a) $P(X_i) \geq 0$ for all i

probabilities cannot be negative

b) $P(X_i \text{ or } X_i) = P(X_i) + P(X_i)$ probabilities of mutually exclusive events add up

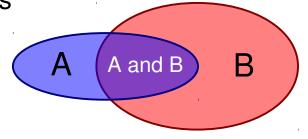
 $c) \sum_{i} P(X_i) = 1$

probabilities of all mutually exclusive events add up to one

More general rules follow for non-exclusive events

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(A \text{ and } B) = P(A|B)P(B) = P(B|A)P(A)$$



A and B are independent if P(A|B) = P(A), then P(A and B) = P(A)P(B)

Bayes theorem

(Bayesian and Frequentist)

$$P(A_i|B) = \frac{P(B|A_i) P(A_i)}{P(B)} = \frac{P(B|A_i) P(A_i)}{\sum_i P(B|A_i) P(A_i)}$$

Bayesian use of Bayes theorem

After looking at LHC data, should I believe in the Higgs? Use Bayes theorem:

$$P(\text{Higgs}|\text{data}) = \frac{P(\text{data}|\text{Higgs}) P(\text{Higgs})}{P(\text{data}|\text{Higgs}) P(\text{Higgs}) + P(\text{data}|\text{no Higgs}) P(\text{no Higgs})}$$

What is my prior belief in the Higgs? I don't know.

$$P({\rm Higgs}) = P({\rm no\,Higgs}) = 0.5$$
 Uninformative prior

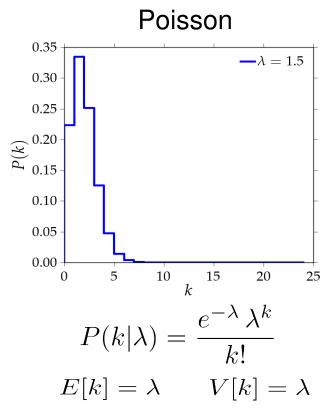
Use of Bayes theorem with *uninformative priors* is the closest to objective inference that Bayesian methodology has to offer

- a) P(data|Higgs) = 0.6 P(data|no Higgs) = 0.1 \Rightarrow P(Higgs|data) = 0.75 Odds to explain data with/without the Higgs 6 to 1, still the Higgs is not a sure bet
- **b)** P(data|Higgs) = 0.8 P(data|no Higgs) = 0.8 $\Rightarrow P(\text{Higgs}|\text{data}) = 0.5$

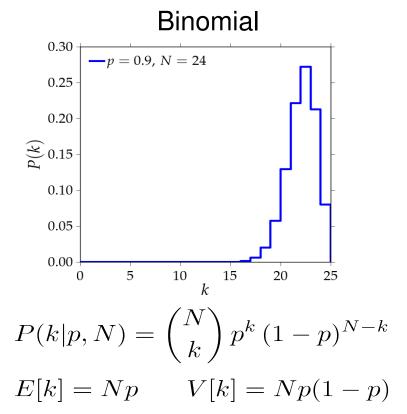
Data did not allow to discriminate between the hypotheses, no update of my belief

Discrete outcomes (e.g. event/particle counts)

$$\operatorname{Expectation} E[k] = \sum_i k_i P(k_i) \quad \operatorname{Variance} V[k] = \sum_i k_i^2 P(k_i) - \Big(\sum_i k_i P(k_i)\Big)^2$$

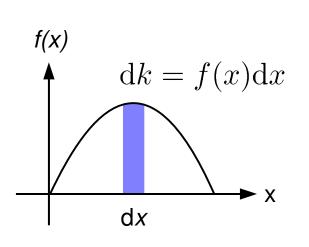


Count of events from a source



Selection of k events out of N events

Continuous outcomes (e.g. energy deposited in a detector)



$$E[x] = \int dx \, x f(x)$$
 $E[g(x)] = \int dx \, g(x) f(x)$

Linearity E[ax + by] = aE[x] + bE[y]

In general for non-linear g(x) $E[g(x)] \neq g(E[x])$

$$V[x] = E[x^2] - E[x]^2$$

$$V[a x + b y] = a^{2} V[x] + b^{2} V[y] + 2ab \operatorname{cov}[x, y]$$

Multivariate case

$$dk = f(\vec{x}) d\vec{x} = f(\vec{x}) dx_0 \cdots dx_n$$

$$E[g(\vec{x})] = \int d\vec{x} g(\vec{x}) f(\vec{x}) = \int dx_0 \cdots dx_n g(\vec{x}) f(\vec{x})$$

Covariance matrix
$$\operatorname{cov}[x_i, x_j] = E[x_i \, x_j] - E[x_i] \, E[x_j] \qquad \operatorname{cov}[x_i, x_i] = V[x_i]$$

Correlation
$$\operatorname{corr}[x_i, x_j] = \frac{\operatorname{cov}[x_i, x_j]}{\sigma[x_i] \sigma[x_j]} -1 \le \operatorname{corr}[x_i, x_j] \le 1$$

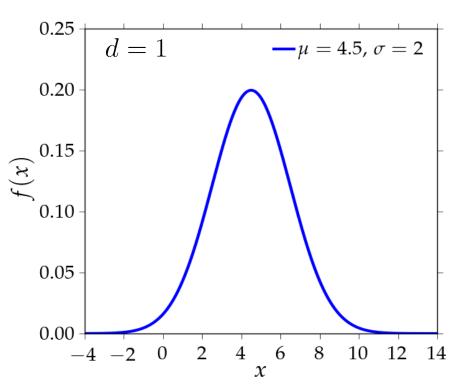
Continuous outcomes (e.g. energy deposited in a detector)

Multivariate normal (Gaussian)

$$f(\vec{x}|\vec{\mu}, V) = \frac{1}{\sqrt{2\pi^d}|V|} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T V^{-1}(\vec{x} - \vec{\mu})\right)$$

$$E[\vec{x}] = \vec{\mu}$$
$$cov[x_i, x_j] = V_{ij}$$

Limit of many random fluctuations added up



Continuous outcomes (e.g. energy deposited in a detector)

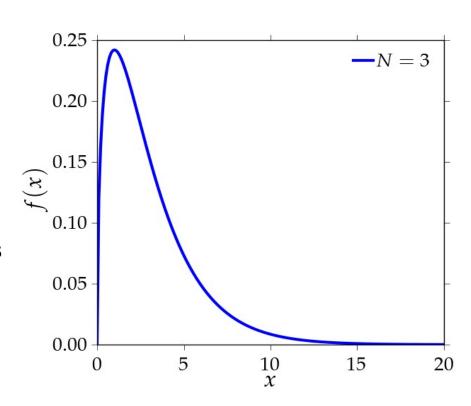
Chi-square χ^2

$$f(x) = \frac{\frac{1}{2} \left(\frac{x}{2}\right)^{N/2-1} e^{-x/2}}{\Gamma\left(\frac{N}{2}\right)}$$

$$E[x] = N$$

$$V[x] = 2N$$

Sum of *N* normal distributed variables with $\mu = 0$, $\sigma = 1$



Some words about correlation

Example A: x_0 and x_1 from normal distribution with μ , σ

Variance of average $\bar{x} = \frac{1}{2}(x_0 + x_1)$

$$V\left[\frac{1}{2}(x_0 + x_1)\right] = \frac{1}{4}(\sigma^2 + \sigma^2) + \frac{1}{2}\underbrace{\cos[x_0, x_1]}_{\rho\sigma^2} = \frac{1}{2}\sigma^2(1 + \rho)$$

$$ho=0\Rightarrow V[ar{x}]=rac{1}{2}\sigma^2$$
 Variance decreases $\propto 1/N$

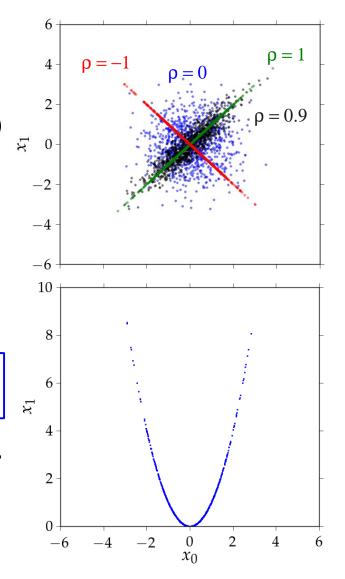
$$\rho=1\Rightarrow V[\bar{x}]=\sigma^2$$

No information gained

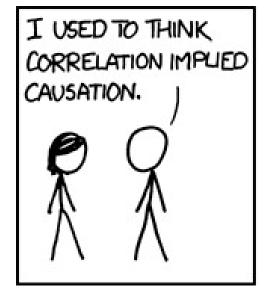
$$ho = -1 \Rightarrow V[\bar{x}] = 0$$
 No randomness

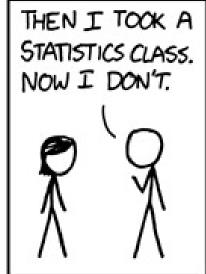
Independence of x_i and x_i $cov[x_i, x_i] = 0$

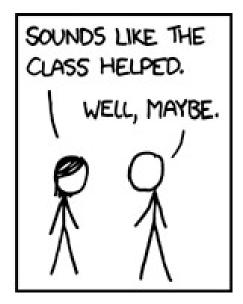
Example B: x_0 from normal distribution with $\mu = 0$, $x_1 = x_0^2$ $cov[x_0, x_1] = E[x_0 x_1] - E[x_0]E[x_1]$ $= E[x_0^3] - E[x_0]E[x_0^2] = 0$



Humor







http://xkcd.com/552

Change of variables

Choice of random variable of continuous distribution is usually not unique How to transform $x \to y$?

$$dk = f(x) dx = g(y) dy$$

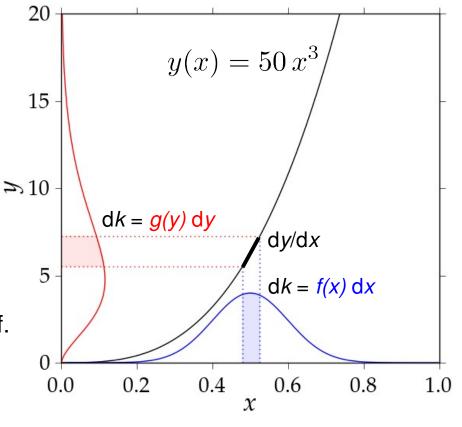
$$g(y) = f(x) \left| \frac{\mathrm{d}y}{\mathrm{d}x} \right|^{-1}$$

$$g(\vec{y}) = f(\vec{x}) \left| \frac{\partial \vec{y}}{\partial \vec{x}} \right|^{-1}$$

determinant of Jacobian matrix

Special case

$$y=\int_{-\infty}^x \mathrm{d}x' f(x')=F(x)$$
 c.d.f. $g(y)=f(x)\frac{1}{f(x)}=1$ flat



useful to judge by eye whether random variable x follows f(x)

Model fitting

Model fitting

Unbinned data x_i or histogram \bar{x}_i, k_i

fitting

Optimal parameters in light of data? Uncertainty due to limited sample?

Model or empirical parametrization with free parameters $f(x|p_1, \ldots, p_n)$

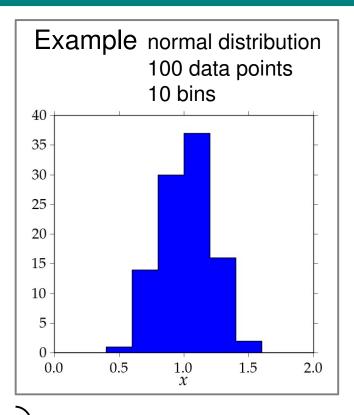
Maximum-likelihood method
Most general and most powerful method
Solution may depend on initial guess

Least-squares method

Good numerical properties but usually an approximation Solution may depend on initial guess

Linear least-squares method

Fast unique solution *independent* of initial guess



use solution as starting point for full ML

Maximum-likelihood method

Idea: Model should maximize joint probability of all data points = likelihood

$$L(p_1,\ldots,p_n)=L(\vec{p})=\prod_i P_i(\vec{p})$$
 depends only on the model parameters \vec{p}

If the x_i are direct samples of a p.d.f. f(x), this can be simplified

$$L(\vec{p}) = \prod_{i} P(x_i | \vec{p}) = \prod_{i} \int_{x_i}^{x_i + \Delta x_i} dx \, f(x | \vec{p}) \quad \xrightarrow{\Delta x_i \to 0} \quad \prod_{i} f(x_i | \vec{p}) \, \Delta x_i$$

we can choose the intervals arbitrarily small

Sums are easier to handle so maximize lnL instead of L (logarithm is monotonic)

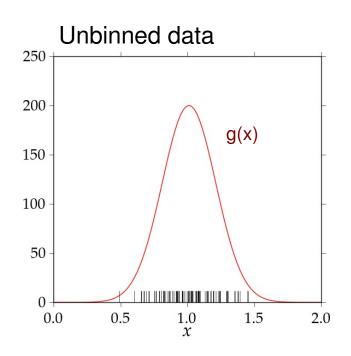
$$\ln L(\vec{p}) = \sum_{i} \ln P(x_i | \vec{p}) = \sum_{i} \ln f(x_i | \vec{p}) + \sum_{i} \Delta x_i \equiv \sum_{i} \ln f(x_i | \vec{p})$$

constant with respect to \vec{p} !

Maximizing InL means solving $\partial_{\vec{p}} \ln L(\vec{p}) \stackrel{!}{=} 0$ Generally a non-linear problem Minimization done numerically (e.g. with MINUIT)

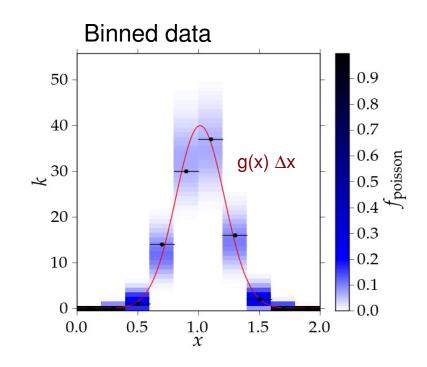
Example

$$g(x|N, \mu, \sigma) = N \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$



Fit directly to point distribution

$$g$$
 has to be normalized $\ln L = \sum_i \ln[g(x_i|N,\mu,\sigma)/N] + \ln f_{
m poisson}(N_{
m tot},N)$



Fit to Poisson distributed histogram counts

$$\ln L = \sum_{i} \ln f_{\text{poisson}}(k_i, \lambda_i(N, \mu, \sigma))$$
$$\lambda_i = \int_{x_i}^{x_{i+1}} dx \, f_{\text{model}}(x|N, \mu, \sigma)$$

Least-squares method

Special case of maximum-likelihood method

Only usable with binned data (or in general: x_i, y_i pairs)

Assumes multivariate-normal distribution of deviations from model

$$L(\vec{p}) \propto \exp\left(-rac{1}{2}(\vec{y} - \vec{f}(\vec{x}|\vec{p}))^T \tilde{V}^{-1}(\vec{y} - \vec{f}(\vec{x}|\vec{p}))\right) egin{aligned} x_i, y_i & \text{data pairs} \\ \tilde{V}_{ij} &= \cos(y_i, y_j) \\ f_i(x_i) & \text{model prediction} \end{aligned}$$

Common case of independent observations

$$L(\vec{p}) \propto \exp\left(\sum_{i} \left(\frac{y_i - y(x_i|\vec{p})}{\sigma(x_i|\vec{p})}\right)^2\right)$$

Minimize
$$LS(\vec{p}) = -2 \ln \frac{L(\vec{p})}{L(\hat{\vec{p}})} = \sum_i \left(\frac{y_i - y(x_i|\vec{p})}{\sigma(x_i|\vec{p})} \right)^2$$
 = sum of squared residuals \rightarrow method of least squares

Another common simplification

Replace $\sigma(x_i|\vec{p})$ by point-wise estimates σ_i (e.g. for histogram entries $\sigma_i = \sqrt{k_i}$)

Linear least-squares method

Special case of least-squares method

Often used to get starting point for numerical minimization of LS or ML methods Solution is unique, statistically unbiased and has minimum variance

Linear model
$$y(x) = \sum_j p_j \, b_j(x)$$
 e.g. polynomial $y(x) = p_0 + p_1 \, x + p_2 \, x^2$

$$LS(\vec{p}) = (\vec{y} - A\vec{p})^T \vec{V}^{-1} (\vec{y} - A\vec{p})$$

$$\tilde{V}_{ij} = \operatorname{cov}(y_i, y_j) \quad A_{ik} = b_k(x_i)$$

Minimum condition can be solved analytically

$$0 \stackrel{!}{=} \partial_{\vec{p}} LS = -2A^T \tilde{V}^{-1} (\vec{y} - A \vec{p}) \quad \text{ with } \quad \partial_{\vec{x}} (\vec{x}^T M \vec{x}) = 2M \vec{x}, \text{ if } M^T = M$$

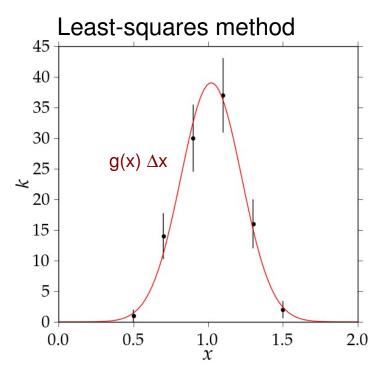
$$A^T \tilde{V}^{-1} \vec{y} = A^T \tilde{V}^{-1} A \vec{p}$$

$$\vec{p} = (A^T \tilde{V}^{-1} A)^{-1} A^T \tilde{V}^{-1} \vec{y}$$

Example

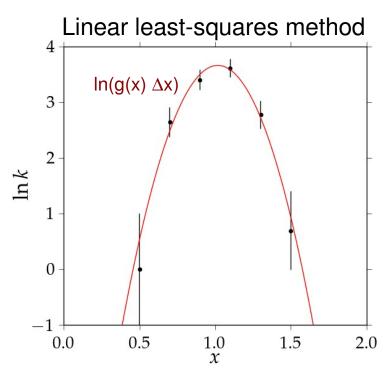
$$g(x|N, \mu, \sigma) = N \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Fit model to histogram counts assuming normal distribution of residuals with $\sigma_i = \sqrt{y_i}$



$$LS(N, \mu, \sigma) = \sum_{i} \frac{(k_i - g(\bar{x}_i | N, \mu, \sigma) \Delta x)^2}{k_i}$$

Cannot use entries with $k_i = 0$ → loss of information



$$LS(N, \mu, \sigma) = \sum_{i} \frac{(k_i - g(\bar{x}_i | N, \mu, \sigma) \Delta x)^2}{k_i} \quad LLS(a, b, c) = \sum_{i} \frac{(\ln k_i - a + b \,\bar{x}_i + c \,\bar{x}_i^2)^2}{1/\sqrt{k_i}}$$

Transform after fit $a, b, c \rightarrow N, \mu, \sigma$

Calculation and interpretation of fit uncertainties

Uncertainty of ML-estimate

In L for observation $\hat{\mu}$ from normal distribution with unknown μ and known σ^2 :

$$L(\mu) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\mu - \hat{\mu})^2}{2\sigma^2}\right)$$

$$\ln\frac{L(\mu)}{L(\hat{\mu})} = -\frac{1}{2\sigma^2} (\mu - \hat{\mu})^2$$

$$-\frac{1}{2} \stackrel{!}{=} -\frac{1}{2\sigma^2} (\mu - \hat{\mu})^2 \implies (\mu - \hat{\mu}) = \pm \sigma$$

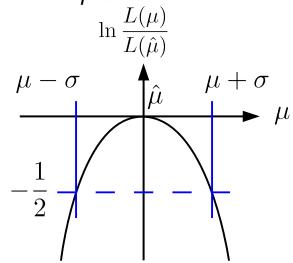
Due to properties of normal distribution

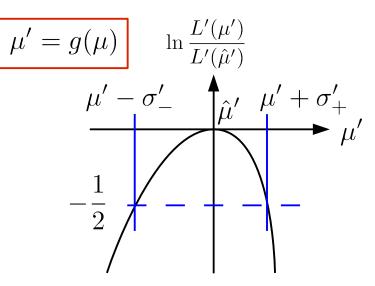
$$P[-\sigma \le \mu - \hat{\mu} \le \sigma] = 68\%$$

$$P[\hat{\mu} - \sigma \le \mu \le \hat{\mu} + \sigma] = 68\%$$

Approach also valid in case of non-normal distribution

Invariance of likelihood ratio
$$\frac{L'(\mu')}{L'(\hat{\mu}')} = \frac{L(\mu) \, \partial \mu / \partial \mu'}{L(\hat{\mu}) \, \partial \mu / \partial \mu'}$$





Uncertainty of ML-estimate

Alternative approach if $\ln L(\mu)$ is approximately parabolic

Taylor expansion around maximum
$$\ln L(\mu)\big|_{\mu=\hat{\mu}} \approx \ln L(\hat{\mu}) + \frac{1}{2} \partial_{\mu}^2 \ln L(\mu)\big|_{\mu=\hat{\mu}} (\mu-\hat{\mu})^2 + O(\mu-\hat{\mu})^3$$

$$\ln L(\mu) = \ln L(\hat{\mu}) - \frac{1}{2} \frac{1}{\sigma^2} (\mu-\hat{\mu})^2$$

General multivariate case

Maximum-likelihood method

$$\ln \frac{L(\vec{p})}{L(\hat{\vec{p}})} \stackrel{!}{=} -\frac{1}{2} \implies p_i^{+\sigma_i^+}_{-\sigma_i^-}$$
or
$$V \approx -\left(\partial_{p_i}\partial_{p_j} \ln L(\vec{p})\big|_{\vec{p}=\hat{\vec{p}}}\right)^{-1}$$

Least-squares method

$$LS(\vec{p}) \stackrel{!}{=} 1 \implies p_i {}^{+\sigma_i^+}_{-\sigma_i^-}$$
 or
$$V \approx 2 \left(\partial_{p_i} \partial_{p_j} LS(\vec{p}) \big|_{\vec{p} = \hat{\vec{p}}} \right)^{-1}$$

Linear least-squares method

$$V = (A^T \tilde{V}^{-1} A)^{-1} \quad \text{exact!}$$

Bias of ML-estimate

Example: normal distribution with unknown μ , σ

$$f(x|\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)^2$$

$$\ln L(\sigma^2) \equiv -\frac{N}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2 \implies 0 \stackrel{!}{=} \partial_{\sigma^2} \ln L(\sigma^2) = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i} (x_i - \hat{\mu})^2$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_i (x_i - \hat{\mu})^2 \quad \text{with} \quad \hat{\mu} = \frac{1}{N} \sum_i x_i \qquad \text{biased estimator of } \sigma^2$$

$$E[\hat{\sigma}^2] = \frac{1}{N} N E[(x_i - \hat{\mu})^2] = E[(x_i - \mu + \mu - \hat{\mu})^2]$$

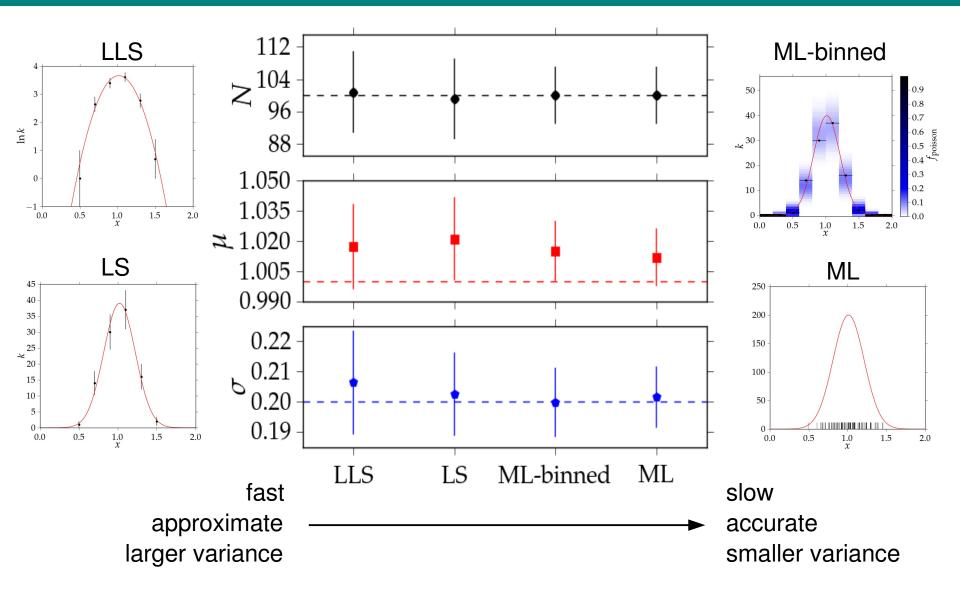
$$= E[(x_i - \mu)^2 + (\hat{\mu} - \mu)^2 - 2(\hat{\mu} - \mu)(x_i - \mu)] = \sigma^2 + \frac{\sigma^2}{N} - \frac{2\sigma^2}{N} = \sigma^2 - \frac{\sigma^2}{N}$$

$$s^2 = \frac{N}{N-1}\hat{\sigma}^2$$

$$\begin{array}{c|c} \text{unbiased estimator of } \pmb{\sigma}^2 \\ \text{with increased variance} \end{array} \qquad V[s^2] = \left(\frac{N}{N-1}\right)^2 V[\hat{\sigma}^2]$$

In general: ML-estimate biased if $\ln L$ not parabolic $E[p-\hat{p}] \propto \partial_n^3 \ln L(p)$

Method comparison



Coverage

How to interpret confidence regions from $\ln \frac{L(\vec{p})}{L(\hat{\vec{p}})} \stackrel{!}{=} -\frac{1}{2}$ or $LS(\vec{p}) \stackrel{!}{=} 1$?

If experiment would be repeated...

Intervals along each dimension cover true value in 68 % of all cases

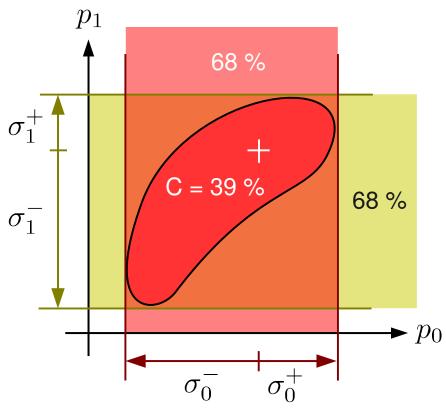
But: 2d-region covers true values only in C = 39 % of all cases

How to get C = 90 % or 99 % regions?

General case: *N* parameters *C* confidence of coverage

$$\ln \frac{L(\vec{p})}{L(\hat{\vec{p}})} \stackrel{!}{=} -\frac{1}{2} \chi_{\beta}(C) \text{ or } LS(\vec{p}) \stackrel{!}{=} \chi_{\beta}(C)$$

with $\int_0^{\chi_\beta^2} \mathrm{d}x \, f_{\chi^2}(x|N) \stackrel{!}{=} C$ solved for χ_β



$$N=1, C=68\% \rightarrow \chi_{\beta} \approx 1$$

$$N = 2, C = 68 \% \rightarrow \chi_{\beta} \approx 1.51$$

Some fitting advice

- Think carefully about the fluctuations in your problem
- Use un-binned maximum-likelihood method if possible
 - Under very general conditions, ML-estimate is asymptotically unbiased and has minimum variance (Cramer-Rao bound)
- Use linear models for empirical parametrizations
 - Fourier terms, polynomials, B-splines, ...
- If you use approximate variance formula, check whether it applies
- If confidence interval is not symmetric, result is usually biased

Bayesian vs. Frequentist inference

Frequentist (Reproducability) Bayesian (Decision theory)

Inference principle

Likelihood function Bayes theorem and **prior probabilities**

"Objective Bayesian": Jeffreys or Reference priors

Point estimation

Maximum of likelihood function Mean of posterior probability density

Invariant to transformations

Not invariant to transformations

Interval estimation

Based on likelihood ratio Quantiles of posterior probability density

Coverage Credible interval tells nothing about coverage

Restriction of a parameter at a physical boundary

Via parameter transformation Via prior probabilities