Via Lactea 2 (2008) http://www.ucolick.org/~diemand/vl

Searches for Dark Matter

Lecture for *Astroteilchenschule* Obertrubach-Bärnfels October 11-13, 2011

Uwe Oberlack

JOHANNES GUTENBERG UNIVERSITÄT MAINZ Part 2: Fundamentals of Direct Detection

Dark

ASA/WMAP

Energy 72%

Atoms

4.6%

Dark

Matter 23%

80 kpc

Outline of Lectures at Astroteilchenschule

Part 1

- Evidence for Dark Matter
- WIMP Dark Matter
- Accelerator Searches
- Indirect Searches

Outline of Lectures at Astroteilchenschule

Part 2

- Direct Detection Technique
 - Kinematics
 - Energy Spectrum
 - Astro, Nuclear, Particle Physics Inputs
- Experimental backgrounds
- Detector techniques:
 - Noble liquids
 - Cryogenic germanium
 - Cryogenic scintillating crystals
 - Superheated liquids

Outline of Lectures at Astroteilchenschule

Part 3

- Signals (?)
 - DAMA / LIBRA annual modulation
 - CoGeNT
 - CRESST-II
- and Limits
 - CDMS-II
 - EDELWEISS-II
 - COUPP
 - XENON100
- Future

Kinematics of DM Direct Detection

WIMP Dark Matter Direct Detection

- Scattering of WIMPs χ off of nuclei A.
 - elastic or inelastic?
 - ▶ spin-independent (~A²) or spin-dependent?
- Differential rate per unit detector mass:

$$\frac{dR}{dE} = \frac{\rho_{\chi} \sigma_{s}}{2 m_{\chi} \mu^{2}} |F(E)^{2}| \int_{v_{min}}^{v_{esc}} f \frac{(\mathbf{v}, t)}{v} d^{3} v$$
$$f(\mathbf{v}, t) \propto \exp\left(\frac{-(\mathbf{v} + \mathbf{v}_{E}(t))^{2}}{2 \sigma_{v}^{2}}\right)$$

$$m_{\chi} \sim 10 - 10^4 \text{ GeV/c}^2, \ \mu = (m_{\chi} m_{N})/(m_{\chi} + m_{N})$$

- ▶ v_x ~ 230 km/s
- "Standard" spherical halo: Featureless recoil spectrum <E> ~ O(10 keV)
- ► ρ_{χ}/m_{χ} : local number density of WIMPs
- $\blacktriangleright~\rho_{\chi} \simeq 0.3~GeV/c^2/cm^3,~~\rho_{\chi}/m_{\chi} \lesssim 10$ / L
- $\blacktriangleright \sigma_s$ scattering cross section per nucleus.

Typical rate < 10^{-2} events / kg / day

R(kpc)

DM Lecture - Oct. 11-13, 2011

Astrophysics Input

Structure of our Milky Way Galaxy

bulge

disk with spiral arms

M81 Spiral Galaxy. NASA/HST

Uwe Oberlack

DM Lecture - Oct. 11-13, 2011

Stellar Orbits in the Galaxy

Halo stars travel high above and far below the disk on orbits with random orientations. Bulge stars also have orbits with random orientations. Solar System: ~15 pc above the galactic plane Disk stars orbit in within the disk circles with the same ~8.0 kpc from the Galactic Center orientation, except for a little up-and-down motion. Pearson Education

Uwe Oberlack

z=0.0

Via Lactea 2 (2008) http://www.ucolick.org/~diemand/vl

WIMP Dark Matter Direct Detection

Halo Models

Considering the standard halo model, an isothermal sphere, the WIMP velocity distribution in the lab frame is:

$$f(\vec{v}) = \frac{1}{(2\pi\sigma_v^2)^{3/2}} \exp\left(-\frac{(\vec{v} + \vec{v}_{\odot})^2}{2\sigma_v^2}\right)$$

 $\begin{cases} \overrightarrow{v}_{\odot}: \text{Sun's velocity} \\ \sigma_v = v_0/\sqrt{2}: \text{ dispersion} \\ v_0: \text{ circular speed at Solar radius} \quad v_0 = 220 \ km/s \end{cases}$

But the Halo can be:

- ellipsoidal, triaxial (change f(v)), (co)-rotating

- anisotropic, ...

The distribution of mass in the halo can be described by the Navarro-Frenk-White profile:

NFW 1996 ApJ 462, 563

 r_s scale radius

Uwe Oberlack

with the critical density

 δ_c is a dimensionless parameter

 $\frac{\rho(r)}{\rho_{\rm crit}} = \frac{\delta_c}{(r/r_s)(1 + r/r_s)^2}$

$$\rho_{crit} = \frac{3H^2}{8\pi G}$$

Expected DM Halo Distribution – Spatial

- Average density may be described by NFW formula
- Lumpiness:
- Numerical simulations do not resolve scales tested by direct detection experiments
- Baryonic matter dominates over DM within the galactic disk.
 Besult: subbalo structures should be

Result: subhalo structures should be smoothed out within the disk.

 $\frac{\rho(r)}{\rho_{\rm crit}} = \frac{\delta_c}{(r/r_s)(1+r/r_s)^2}$

Expected DM Halo Distribution – Velocity

Vogelsberger et al., 2008 0812.0362

Annual Modulation

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} \approx \left(\frac{\mathrm{d}R}{\mathrm{d}E_R}\right) \left[1 + \Delta(E_R)\cos\alpha(t)\right]$$

where $\alpha(t) = 2\pi(t-t_0)/T$, T = 1 year and $t_0 \sim 150$ days.

Particle Physics Input

WIMP Scattering Cross Sections

Example: SUSY (but direct searches are sensitive to other models as well)

- Compute cross sections χ quark and χ gluon with various SUSY models. Large parameter space, constrained by accelerator and direct search experiments, and cosmology.
 - ▶ spin-independent: coupling to mass of nucleus. Coherence $\Rightarrow \sigma \propto A^2$
 - spin-dependent: coupling of spins of nucleus and neutralino interaction with paired nucleons in the same energy state cancel => no A² enhancement

- Distribution of nucleons within nucleus: nuclear form factor.
- SI: Large nuclei gain ~A² at small momentum transfer, but lose at higher momentum transfer due to coherence loss.

Cross Section for WIMP-Nucleon Scattering Spin-Dependent

$$\sigma_{SD} = \frac{32}{\pi} G_F^2 \frac{m_{\chi}^2 m_N^2}{(m_{\chi} + m_N)^2} \frac{J_N + 1}{J_N} \left(a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2$$

Spin-dependent vs. Spin-Independent Scattering in the CMSSM

Nuclear Physics Input

Cross Section for WIMP-Nucleon Scattering,

Nuclear Form Factor

Scalar (spin-independent) scattering

 10^{-3}

10

50

100

 $E_r = q^2/2M_T [keV]$

150

200

At finite momentum transfer: **Form factor**:

Fourier transform of nuclear density

$$F^{2}(q) = \left| \int \rho(r) \exp\left\{ i \frac{\vec{q} \cdot \vec{r}}{\hbar} \right\} dr \right|^{2}$$
$$F(E_{r}) = \left(\frac{3 j_{1}(qR_{1})}{(qR_{1})} \right)^{2} \exp\left[-(qs)^{2} \right]$$

Momentum transfer: $q = \sqrt{s} m_N E_r$ *j*₁: first spherical Bessel function

 $R_1 = \sqrt{R_0^2 - 5 \ s^2}$ $R_0 \approx 1.2 \ \text{fm} \ A^{1/3}$

 $s \approx 1 \text{ fm}$

Helms form factor based on:

 $\rho(r) = \int_{\text{volume}} \rho_0(\mathbf{r}')\rho_1(\mathbf{r} - \mathbf{r}')d^3x'$

$$\rho_0(r) = \begin{cases} \frac{3}{4\pi r_n^3} & r < r_n \\ 0 & r > r_n \\ \end{cases},$$
$$\rho_1(r) = \frac{1}{(2\pi s^2)^{\frac{3}{2}}} e^{-r^2/2s^2}.$$

20

Recoil Spectrum

$$\frac{dR}{dE} = \frac{\rho_{\chi} \sigma_{s}}{2 m_{\chi} \mu^{2}} |F(E)^{2}| \int_{v_{min}}^{v_{esc}} f \frac{(v, t)}{v} d^{3} v$$

$$f(v, t) \propto \exp\left(\frac{-(v + v_{E}(t))^{2}}{2 \sigma_{v}^{2}}\right)$$
Eximate spectral optimizer of the spectral opt

10⁻⁵

10⁻⁶

10⁷0

8 evts/100-kg/year

 $(E_{th}=15 \text{ keVr})$

20

30

40

50

60

70

80

10

Ar (A=40)

 For standard halo model approxir form:

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} \approx \left(\frac{\mathrm{d}R}{\mathrm{d}E_R}\right)_0 F^2(E_R) \exp\left(-\frac{E_R}{E_c}\right)$$

• Including form factors:

Detector Effects: Smearing of the Threshold, Efficiencies

Backgrounds in Direct DM Search

Cross-sections are *very* small: $<10^{-43}$ cm² or 10^{-7} pb (spin-independent) Without background, sensitivity \propto (mass × exposure time)⁻¹

With background subtraction \propto (M t)^{-1/2} until limited by systematics.

Backgrounds:

Gamma-rays & beta decays:

~100 events/kg/day Need very good β and γ background discrimination. Shielding: low-activity lead, water, noble liquids (active), liquid N₂, ...

Neutrons from (α, n) and spontaneous fission (concrete, rock, etc.):

~ 1 event/kg/day (LNGS) Neutron moderator (polyethylene, paraffin, ...)

Neutrons from CR muons:

Rate depending on depth. µ-veto, n-veto, shielding

α decays from Rn daughters, ...

Backgrounds in Direct DM Search

• Ge spectrum unshielded underground

 Ge spectrum underground with Pb shield and purge for Rn

DM Detector Overview Detection Principles

